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Abstract
This article describes designs that use multiple conversational agents within the frame-
work of intelligent tutoring systems. Agents in this case are computerized talking heads or 
embodied animated avatars that help students learn by performing actions and holding con-
versations with them in natural language. The earliest conversational intelligent tutoring 
systems were limited to a single agent that interacted with a student in the role of a teacher 
or expert. Technological advances have since made possible systems in which multiple 
agents interact with the learner and each other to model ideal behavior, strategies, reflec-
tions, and social interactions. Though still an emerging technology, multi-agent intelligent 
tutoring systems afford pedagogical benefits that go beyond the capabilities of the single-
agent system and have facilitated learning gains on a variety of subject matters and skills, 
including science, technology, engineering, mathematics, research methods, metacogni-
tion, and language comprehension. The present work describes some common multi-agent 
designs that may be used to achieve a variety of pedagogical goals. We provide examples 
of how these designs have been implemented in educational or experimental settings and 
anticipate future use within the field of artificial intelligence.

Keywords  Adaptive · Artificial intelligence · Conversational agents · Intelligent tutoring 
systems · Multi-agent designs · Personalized learning

1  Introduction

Intelligent Tutoring Systems (ITS) are computerized learning environments that model 
learners’ psychological states to provide instruction that is adaptive to these states and 
advances the educational agenda (Graesser et al. 2012a; Woolf 2009). Compared to more 
traditional, “static” computer assisted learning approaches that deliver the same material 
to students of different knowledge and ability levels, the ITS approach is better because it 
can tailor educational content and instructional methods to each individual learner. This 

 *	 Anne Lippert 
	 alippert@memphis.edu

1	 Department of Psychology and the Institute for Intelligent Systems, University of Memphis, 
Memphis, USA

http://orcid.org/0000-0003-3920-1582
http://crossmark.crossref.org/dialog/?doi=10.1007/s10758-019-09431-8&domain=pdf


444	 A. Lippert et al.

1 3

capability to deliver a personalized learning experience separates ITSs from the more tradi-
tional methods of instructions.

A special class of ITS called Conversational Intelligent Tutoring Systems (CITS) use 
animated conversational agents that interact with students and help them learn by either 
modeling good pedagogy or by holding a conversation. The agents may take on different 
roles: mentors, tutors, peers, players in games, or avatars in the virtual worlds. The students 
communicate with the agents through speech, keyboard, gesture, touch panel screen, or 
other conventional channels. In response, the agents express themselves through speech, 
facial expression, gesture, posture, and other embodied actions. Within the general class 
of CITS, the most common design of agent interaction consists of a dialogue, in which 
the human student interacts with only one agent (Graesser et al. 2017a). The agent can be 
either a peer (approximately the same level of proficiency as the learner), a student agent 
with lower proficiency (so that the learner can teach the agent), or an expert tutor agent. 
We hereafter refer to such systems as single-agent CITS.

Advances in agent modeling tools and artificial intelligence technologies have made 
possible systems that incorporate two or more agents (Johnson and Lester 2018; Kim and 
Baylor 2016). These multi-agent CITS (MACITS) represent a milestone in the field of ITS 
since they are capable of modeling more than just the typical single tutor agent-learner 
exchange. Additional agents can interact with the learner and each other in a range of social 
and informational capacities. The various roles agents may take on increases the flexibility 
of instructional tactics so that different pedagogical goals for different classes of students 
can be addressed. For example, when the design includes both a tutor agent and a peer 
agent, students can observe the tutor agent and peer agent interact to model good behav-
ior, which is sometimes helpful for students with low knowledge and skills (Craig et  al. 
2012). The more advanced student may attempt to teach the peer agent, with the tutor agent 
helping along the way. The two agents can disagree with each other and lead to cognitive 
disequilibrium, productive confusion, and deeper learning in the student (D’Mello et  al. 
2014). In general, MACITS provide capabilities to enhance learning that are not possible 
with single-agent systems (Graesser et al. 2017a).

One of the most significant capabilities of conversational pedagogical agents is their 
ability to support learning by fostering the relationship between emotions and cognition 
(Kim and Baylor 2006). Social cognitive theories view learning as a social process of 
interaction and negotiation with others (Bandura 1991; Vygotsky 1978). Agents can theo-
retically provide the social fabric that learners typically receive in a traditional classroom 
environment. Agents can interact with learners as tutors, peers, teammates, and can sup-
port learners’ emotional states using empathy and by building relationships with learners. 
Research on single agent systems backs the idea that social support can influence learning. 
For example, when an agent behaves as teammates or activity partners, they provide peer 
support that lowers learner anxiety (Huang and Mayer 2016). When single agents act as 
role models, they can enhance empathy and self-efficacy and a sense of responsibility by 
making mistakes that students observe and point out (Chase et al. 2009).

Whether or not additional agents are more beneficial than single agent designs in terms 
of social support is still up for debate. However, since multiple agent systems include 
within them single agent-user interactions, multiple agents systems should provide the 
same social scaffolding to support learning as the single agent systems and more. For 
example, peer agents of different abilities may interact in the same session with the user. 
This affords users opportunities to mimic the skilled peers and increase their confidence 
around less skilled peers. Praise from a tutor agent to another peer could motivate the user, 
as could asking the user to assist fellow peer agents when they are stuck on a problem. 
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Multiple agents also make it possible to work in teams, which can encourage users to work 
harder to satisfy other group members (Alport 1920), as well as motivate and facilitate 
a change in human opinions (Becker-Beck et al. 2005; Lee and Nass 2002). The hope is 
that the pedagogical benefits that multi-party conversational frameworks afford will incite 
learning gains beyond those seen with the single-agent system (Graesser et al. 2017a).

Though the ITS field has built a number of successful systems, advances in the field 
are often siloed (Craig 2018). Systems tend to be stand alone and do not have the capabil-
ity to communicate with each other. They are highly domain specific and so are difficult 
to repurpose to teach different subjects. For example, researchers building a multi-agent 
system to teach reading strategies cannot easily transform it into a system for engineering 
instruction. As a result, the idea that multiple agent designs can afford advantages above 
and beyond the single agent design is under-acknowledged and understudied. The present 
work summarizes the capabilities, challenges and future development of MACITS, draw-
ing heavily from our own first-hand knowledge in developing and testing these systems. 
At the interdisciplinary Institute for Intelligent Systems at the University of Memphis, we 
have spent the past decade pursuing the multi-agent, conversational approach. We hope the 
insight of our own experiences promotes awareness and further research regarding multi-
agent designs.

We first describe foundational elements of CITS to provide the necessary background 
knowledge. Next, we lay out the various capabilities afforded by different designs of MAC-
ITS and give examples of systems that have actualized these capabilities in educational 
settings. When possible, we augment examples with empirical evidence regarding the sys-
tem’s value as a learning tool. We conclude by indicating future directions for MACITS.

2 � Conversational Intelligent Tutoring Systems

Previous forms of computer assisted learning are often described as static in the sense 
that they present the same material and instruction to all users, regardless of differences 
in learner ability or knowledge. In doing so, these approaches fail to support flexible indi-
vidualized learning and tutoring that incorporates knowledge about the domain, the stu-
dent, and teaching strategies. The class of ITS with conversational agents, or CITS, has 
proliferated over the last decade, in part because of their ability to support personalized 
learning. AutoTutor and its descendants (Graesser 2016; Nye et al. 2014) have helped col-
lege students learn a range of skills and subject matter by holding a conversation in natu-
ral language. These conversation-based systems have been developed to teach topics such 
as computer literacy (Graesser et  al. 2004), physics (DeepTutor, Rus et  al. 2013); Auto-
Tutor, (VanLehn et al. 2007), biology (GuruTutor, Olney et al. 2012), and scientific rea-
soning (Operation ARIES/ARA​, Halpern et al. 2012; Kopp et al. 2012; Millis et al. 2017). 
Other examples of CITS that have improved student learning are MetaTutor (Azevedo et al. 
2010), Betty’s Brain (Biswas et al. 2010), iDRIVE (Craig et al. 2012; Gholson et al. 2009) 
iSTART​ (Jackson and McNamara 2013; McNamara et al. 2006), Crystal Island (Rowe et al. 
2011), My Science Tutor (Ward et al. 2013), and Tactical Language and Culture System 
(Johnson and Valente 2009).

CITS can vary in their simulations of human conversation mechanisms, but all of them 
attempt to comprehend natural language, produce adaptive responses, and capitalize on peda-
gogical strategies to assist more personalized learning. Those like AutoTutor and its deriva-
tives are equipped with agents that interact with students and material in ways that apply 



446	 A. Lippert et al.

1 3

explanation-based constructivist theories of learning. These systems often mimic the collabo-
rative constructive activities that occur during human tutoring (Graesser et al. 2017d). Agents 
simulating tutors is a sensible first design for a CITS because evidence suggests human tutor-
ing effectively improves student learning and motivation. Meta-analyses comparing human 
tutoring to traditional classroom style instruction and similar conditions report effect sizes 
between σ = 0.20 and σ = 1.00 (Graesser et al. 2017d; Cohen et al. 1982; VanLehn 2011).

Though human tutors are often considered the gold standard for producing learning 
gains in students (Shubeck et al. 2017), the exact mechanisms that make human tutoring so 
conducive to learning are open to debate. Research conducted on the discourse, language, 
facial expressions, gestures, and actions used in tutorial conversations provide some insight 
(Graesser et al. 1995, 2009, 2017d). We know that tutors who attempt to get students to 
construct answers and solutions to problems are more effective in inducing learning than 
those who simply regurgitate information in the same vein as a classroom style lecture (Chi 
et al. 2001). In fact, it appears that most human tutors follow a systematic conversational 
structure (Graesser et al. 1995) that has been termed expectation- and misconception-tai-
lored (EMT) dialogue (Graesser et al. 2008, 2012b).

The EMT dialogue occurs when a tutor asks the student a challenging question, then 
anticipates particular correct answers (called expectations) and particular misconceptions, 
while tracing the student’s rationale for the response (Graesser 2016). The tutor is able to 
form an approximate model of what the student knows over multiple conversation turns, 
by comparing the student’s responses to the expectations and misconceptions (Graesser 
2016; Graesser et al. 2018a, b; Ma et al. 2014). The feedback tutors give depends on the 
degree to which the student contributions match expectations or misconceptions (Graesser 
2016). The tutors generate dialogue that corrects student misconceptions and helps stu-
dents respond in ways that that eventually fulfill the expectations (Graesser 2016).

CITS such as AutoTutor, implement EMT moves within conversations in hopes they 
lead to learning gains seen in human tutoring sessions (Graesser 2016; Graesser et  al. 
2018a, b). Below we list tutor dialogue moves representative of EMT conversations in 
AutoTutor and in human tutoring sessions (Graesser 2016):

Main Question or Problem This is the challenging question or problem the tutor asks 
the student. Tutor and student then spend conversational turns (anywhere from 5 to over 
100 turns) trying to collaboratively solve the problem.

Short Feedback Quick feedback the tutor gives in response to the student’s answer. 
Feedback takes the form of either positive (“yes,” “correct,” head nod), negative (“no,” 
“almost,” head shake, long pause, frown), or neutral (“uh huh”, “okay”).

Pumps The tutor issues nondirective pumps (“Anything else?” “Tell me more.”) to coax 
the student into talking or taking action.

Hints The tutor supplies hints that encourage students to talk or take action along some 
conceptual path. The hints range from very generic (“What about X?,” “Why?”) to 
speech acts that push the student toward a particular answer. Hints encourage active 
student learning within the boundaries of relevant material.

Prompts These are leading questions asked by the tutor with the aim of getting the stu-
dent to articulate a particular word or phrase. Some students say very little and prompts 
are needed to get the student to say something specific.



447Multiple Agent Designs in Conversational Intelligent Tutoring…

1 3

Prompt Completions The tutor fills in the correct completion of a prompt.

Assertions The tutor states a fact or information.

Summaries The tutor provides a synopsis of the answer to a question

Mini-lectures The tutor conveys didactic material on a particular topic.

Corrections The tutor corrects a student’s error or misunderstanding.

Answers The tutor answers a student’s question.

Off-Topic Comment The tutor makes statements unrelated or tangentially related to the 
subject matter.

Whether the student or the tutor supplies the expectation content varies among dialogue 
moves. For instance, the amount of information supplied by the tutor increases with each 
move in the following manner: pump > hint > assertion > summary (Nye et al. 2014) Dia-
logues between a tutor and a more knowledgeable student have a higher proportion of tutor 
pumps and hints (requiring the student to offer more input) than prompts and assertions 
that provide more information from the tutor (Jackson and Graesser 2006).

Implementations of the EMT dialogue in CITS have helped students learn challenging 
material. Assessments from over 20 experiments in the areas computer literacy (Graesser 
et  al. 2004), Newtonian physics (VanLehn et  al. 2007), and scientific reasoning (Kopp 
et al. 2012) showed that students using AutoTutor had learning gains of approximately 0.80 
sigma (standard deviation units) compared to students who read a textbook for the same 
amount of time (Nye et al. 2014; Graesser et al. 2012b). Around a dozen measures of learn-
ing were collected in these assessments, such as number of correct answers on multiple-
choice questions, essay quality when students attempt to answer challenging questions, a 
cloze task that has students fill in missing words of texts that articulate explanatory rea-
soning on the subject matter, and performance on problems that require problem solving. 
When researchers explored the depth of knowledge acquisition using the results of these 
assessments, they found that the EMT dialogue of AutoTutor helped to increase learn-
ing gains for measures that capture deep as opposed to shallow learning (Nye et al. 2014; 
Graesser et al. 2012b). In this case, shallow learning included the ability to recall simple 
facts, rules, and procedures whereas deeper learning required inference generation, integra-
tion of information, reasoning, and problem solving. The learning outcomes of AutoTu-
tor on deep learning suggest that EMT dialogues found frequently in human tutoring may 
be used to model appropriate conversations in ITSs to help students learn, even when the 
material is more difficult.

3 � MACITS Designs

In AutoTutor and other CITS, EMT conversations are the primary pedagogical method 
of scaffolding good student answers whether the system has a single or multiple agents 
(Graesser 2016). In the single-agent system, the conversations between agent and student 
are called dialogues but in a multi-agent system, the interchanges may be called tria-
logues (two agents interact with one student), quadralogues (three agents, one student), 
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quintalogues (four agents, one student), and so on. Though research is in its early stages, 
the hope is that the pedagogical benefits that multi-party conversational frameworks afford 
will incite learning gains beyond those seen with the single-agent system (Graesser et al. 
2017a). Some of these benefits include the ability to model social interactions, stage com-
petitions, and manipulate cognitive disequilibrium (Graesser et al. 2017a).

Like single-agent designs, multiple-agent designs have been incorporated in many com-
puterized learning environments, such as Betty’s Brain (Biswas et al. 2010), Tactical Lan-
guage and Culture System (Johnson and Valente 2009), iDRIVE (Gholson et  al. 2009), 
iSTART (Jackson and McNamara 2013; McNamara et  al. 2006), and Operation ARA 
(Halpern et al. 2012; Forsyth et al. 2012; Millis et al. 2011). When comparing single agent 
designs and MACITS in their current state, a major advantage of the latter is that its con-
versations may be designed to encompass different pedagogical goals. For instance, stu-
dents can observe two or more agents interacting, allowing the student to model or adopt 
the agents’ approach to a problem. Students can hold a discussion with a tutor agent while 
a peer agent occasionally contributes, or can assist a struggling peer agent while a tutor 
advises the interaction. Agents can argue with each other over answer choices and turn to 
the human student for a resolution. A tutor agent can enhance motivation by spearheading 
a competition between the human student and peer agents in a game scenario.

As the number of MACITS continues to grow and their technology improves, they are 
increasingly proving useful in a variety of educational contexts outside of the traditional 
K-12 or college level classroom setting. For example, a multi-agent version of AutoTu-
tor has been implemented in a virtual environment to train civilian medical personnel on 
mass-casualty disaster scenarios with available military resources (Shubeck et  al. 2016). 
In the Virtual Civilian Aeromedical Evacuation Sustainment Training program (VCAEST) 
AutoTutor agents provide background information delivery, correct learners on specific 
errors they make throughout the triage process, and guide the learners through a city block 
recently struck by an earthquake. An efficacy study of VCAEST with the AutoTutor agents 
showed that the virtual training environment was just as effective at promoting learning as 
a live-action training scenario on both immediate learning and transfer tests (Shubeck et al. 
2016).

MACITS have also been used to assess collaborative problem solving (CPS) in the 
Programme for International Student Assessment (PISA, Graesser et  al. 2016). Fifteen-
year-old students from over 50 countries were assessed by PISA on a host of proficiencies, 
including CPS, and students’ interactions with multiple computer agents were used in an 
effort to provide a reliable and valid summative assessment of CPS proficiency. Available 
data have so far supported the validity of the PISA CPS 2015 framework. For example, 
Li and Liu (2017) conducted an assessment in Taiwan that adopted the PISA CPS 2015 
assessment framework. The study developed an internet-based CPS assessment with con-
versational agents on five tasks to be completed in 100 min. There were over 50,000 ninth 
and tenth-grade students who participated between October 2014 and February 2015. The 
problem-solving dimension in the PISA CPS 2015 assessment showed a similar ordering 
of competencies for the four problem-solving components (A > B > C > D) as were reported 
for the PISA 2012 assessments of individual problem solving. Although the complete data 
for PISA CPS 2015 is still being analyzed for over 400,000 students in three to four dozen 
different countries, the reliability of the data in field trials is promising and should help 
motivate future MACIT designs that improve upon the state of technology used in PISA 
2015.

Depending on the educational context, the design of the MACIT also varies. In an over-
view of the research, Graesser et  al. (2017a) explored several designs of MACITS and 
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systematically grouped them by their suitability for particular students, subject matters, 
and depths of learning. A major theme in these designs is the dependency on social learn-
ing. For example, in what Graesser et al. (2017a, b, c, d) call “vicarious learning designs”, 
users are involved in little or no active learning, and acquire knowledge by observing the 
interactions of others. Competition style designs pit the human user against the peer agent 
while the tutor agent keeps score of the competitors’ correct responses. In some designs 
the conversations occur mainly between the tutor and human user with the student agent 
intermittently giving input and receiving feedback. The tutor agent may give different feed-
back to the human learner and student agent when they give similar incorrect answers. For 
example, the feedback to the human may be more neutral than the negative feedback given 
to the student agent. In “teachable agent” designs, the human learns by guiding the peer 
agent toward the solution. If problematic interactions occur, the tutor agent offers assis-
tance. Another class of designs implements peer agents that vary in knowledge and skills. 
This style gives the human student the opportunity to help correct incorrect input from 
a peer, answer a peer’s question and take initiative in guiding exchanges. In some situa-
tions, the peer agent may have more knowledge and can help the human draw the appropri-
ate conclusions in a peer like (rather than authoritarian) manner. Some systems may want 
an environment in which two agents express contradictions, arguments, or different views. 
The agents hold conversations in which they disagree or argue about a topic or particular 
solution. These discrepancies between agents stimulate cognitive disagreement, confusion, 
and potentially deeper learning.

The vicarious learning designs are best suited to students lacking domain knowledge, 
skills, and the tools required to interact with the system. Furthermore, these designs train 
for shallow learning rather than deep learning, assisting with the acquisition of surface 
level knowledge such as facts rather than higher level comprehension skills. “Teachable 
agent” designs and those in which agents disagree are better for the more capable students 
and for inciting deeper learning. Agents in any of these designs may be implemented dif-
ferentially to suit the motivation and emotions of the learner. For instance, game environ-
ments motivate students through competition, a peer agent offering incorrect responses can 
minimize negative feedback to the student, and arguments between agents elicit confusion 
(a major predictor of deep learning (D’Mello et  al. 2014; Lehman et  al. 2013). Besides 
facilitating the social, emotional and motivational aspects of learning to various degrees, 
the multi-agent designs allow for student proficiency to be assessed to varying degrees. 
Vicarious learning designs are more likely to provide little if any active assessment, 
whereas non-vicarious designs can measure performance by comparing student actions and 
verbal responses with the expectations and misconceptions.

4 � Implementations of Multi‑agent Designs

While researchers are exploring the initial designs of MACITS, another emerging area 
of research focuses on their implementations. Given that certain approaches are more 
suitable for particular educational purposes and students, each MACITS embodies 
unique considerations during implementation. In this section, we begin by discussing 
two MACITS that demonstrate educational benefits for populations with lower domain 
proficiency, iDRIVE and CSAL AutoTutor. The first, Instruction with Deep-level Rea-
soning questions In Vicarious Environments (iDRIVE), uses multiple agents to teach 
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science content by vicariously modeling deep reasoning questions in question–answer 
dialogues (Craig et  al. 2012; Gholson et  al. 2009). The second, Center for the Study 
of Adult Literacy (CSAL) AutoTutor, shows how MACITS may leverage particular to 
facilitate reading comprehension in low literacy adults, and how social interactions play 
a key role. We end with a discussion of Operation ARA/ARIES, a computerized edu-
cational game in which multiple agents collaborate with a student to reach a final goal. 
Operation ARIES/ARA implements many of the seven aforementioned designs, but in 
this paper we explore its particular use of contradictions, which are used to incite deep 
learning in high knowledge populations.

4.1 � Vicarious Learning Through iDRIVE

In iDRIVE a peer or student agent asks a series of deep questions about STEM content 
(such as physics, biology, or computer literacy) which are followed immediately with 
solutions provided by a teacher agent. Unlike many computerized learning environments 
that help students acquire shallow knowledge (e.g. identification of key terms, their fea-
tures, simple definitions), iDrive teaches the deep knowledge (e.g. causal reasoning, 
solving hard problems, integrating components in complex systems, resolving contradic-
tions) that is more difficult for people to obtain. In particular, student and teacher agents 
in iDrive exchange approximately 30 deep question-solution pairs per hour as learn-
ers watch and listen. In this way, students acquire knowledge vicariously through agent 
conversations that model high-quality question asking and in depth, explanation-based 
answering that facilitates deep learning (Chi 2009; Pashler et al. 2007; Rosenshine et al. 
1996). Early studies on iDRIVE revealed that in the domain of physics, students receiving 
vicarious learning with deep questions performed comparably to students assigned to the 
more interactive CITS, AutoTutor (Gholson et  al. 2009). In addition, iDrive’s vicarious 
dialogues increased question asking by students, which is a metacognitive strategy that 
improves learning (Rosenshine et al. 1996; Craig et al. 2006).

Later studies considered whether different types of vicarious explanations in iDrive 
affected learning for students who varied in domain knowledge (Craig et al. 2012). In par-
ticular, researchers compared learning gains for high and low knowledge students among 
four conditions: a content monolog, questions plus answer content responses, “self-expla-
nations” stated by a peer agent, and questions plus self-explanations. Among college stu-
dents, those with low domain knowledge benefited significantly more from the question 
plus explanation condition (34% learning gain vs. 7% for high knowledge students; Craig 
et al. 2012. In high-school students in different ability tracks (honors vs. standard) but with 
comparable knowledge on pre-tests, both honors and standard classes significantly benefited 
from questions plus explanations (p < 0.01), with honors students showing slightly higher 
learning gains (Craig et al. 2012). This suggests that low knowledge learners, even with dif-
ferent ability levels, benefit from vicarious “self-explanations” that help to construct a men-
tal representation of the material. On the other hand, learning benefits may be less in high-
knowledge students due to mismatches between students’ existing mental models and the 
agents’ explanations (Craig et al. 2012). These results imply that vicarious deep questioning 
and explanations afforded by designs with multiple agents can offer significant advantages 
for students with low knowledge. Specifically, they help to model new skills and interactions 
(e.g., question-asking) that the low knowledge human learner does not possess.

One limitation of iDRIVE and other vicarious learning environments is that students 
observe agents interacting so they are not actively constructing information. Active 
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learning requires overt behaviors that elicit different knowledge change or learning pro-
cesses and is an important component of deep learning (Chi and Wylie 2014). iDRIVE has 
entirely passive affordances for learning, which is suitable for students at an introductory 
stage of a subject matter when they cannot actively construct much information. It is less 
effective for students at the more intermediate and advanced stages.

4.2 � CSAL AutoTutor: Trialogue Designs for Reading Comprehension

Whereas iDrive teaches STEM material in a more passive, observational manner, CSAL 
AutoTutor was designed to promote active learning through discussions with pedagogical 
agents. CSAL AutoTutor is a MACITS that was developed as part of an intervention led 
by the Center for the Study of Adult Literacy (CSAL, http://csal.gsu.edu), whose goal was 
to improve reading comprehension in adults with low literacy skills (Graesser et al. 2019). 
CSAL AutoTutor uses authentic adult activities (e.g. how to fill out a job application, read-
ing a bus schedule) to help learners develop several comprehension strategies, including 
predicting features of text genre, acquiring vocabulary from context, clarifying the explicit 
meaning of text through questioning, elaborating on text through inferences, and summa-
rizing the text. Conversational agents are especially well suited to this project because of 
the target population’s limited reading abilities, and because of the special socio-psycho-
logical challenges they face (Greenberg 2008).

Fig. 1   Screenshot and conversation for the MACITS, CSAL AutoTutor. The trialogue between the tutor 
agent, Cristina (top left), the peer agent, Jordan (top right), and the user demonstrates many of the common 
EMT tutoring moves

http://csal.gsu.edu
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In the current version of CSAL AutoTutor, two computer agents, a teacher (Cristina) 
and a peer student (Jordan), hold trialogues (Graesser et al. 2014) with a learner in 35 les-
sons. Trialogues consist of EMT tutoring moves (see above) such as questioning, hinting, 
eliciting information, giving short feedback, explaining how answers are right or wrong, 
and filling in gaps of information, that scaffold students through various reading compre-
hension strategies. Figure 1 shows a conversation that teaches students the compare and 
contrast strategy using a passage on walking and running as exercise. Blake is the human 
student, Cristina is the teacher agent and Jordan is the peer agent. Jordan may give incor-
rect answers but Cristina always provides correct solutions. The trialogue illustrates some 
typical agent moves in CSAL AutoTutor: main question, short feedback (negative, neutral, 
and positive), correction, pump, hint, and summary. The information in italics and brackets 
showcase some of the trialogue move categories. Throughout the conversation, Blake is 
encouraged to fill in information, answer questions, and resolve confusion on the part of 
the peer agent. In this way the human actively participates (trialogue design) rather than 
passively observes (as seen with iDRIVE):

Cristina Blake, can you help Jordan decide whether walking or running is better for 
his sister Natalie? Of the three highlighted sentences, which one compares running and 
walking in terms of stress on the body? [Main question] Select the sentence you think is 
correct. [Pump]

Blake [Chooses incorrect response]

Cristina Blake, ok, not exactly. [Neutral feedback]

Cristina The sentence you selected evaluates running and walking based on the amount 
of time a person has to spare and not on the amount of stress on the body [Correc-
tion].We need to find a sentence that discusses stress on the body and walking and run-
ning [Hint]. Try again to pick the sentence that says something about how exercise can 
impact the body [Pump].

Blake [Chooses correct response]

Cristina Jordan, what about you? Do you think Blake picked the right answer?

Jordan No. I think it’s the third sentence.

Cristina Jordan, you are wrong. [Negative Feedback] Blake, good job, you got it right! 
[Positive Feedback].

Cristina Jordan, the sentence you picked compared the positive health benefits of walking 
and running. It said nothing about negative effects like stress on the body [Correction].

Jordan Okay, I get it. The sentence Blake picked was right. It compares walking and 
running and tells us walking is less stressful on the body—especially if you are over-
weight. [Summary].

The social-emotional aspects of the CSAL system are particularly importance for low 
literacy adults who face obstacles to literacy in terms of low self-esteem, anxiety, and lack 
of motivation (Greenberg 2008). The CSAL AutoTutor trialogues were designed to address 
these obstacles in way that go beyond those implemented in single-agent systems. For 
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instance, in the above conversation, Cristina gives negative feedback to the student agent but 
only neutral feedback to the human learner in response to incorrect answers (). This means 
the peer agent gets the brunt of negative attributions whereas the human student is provided 
with either neutral or positive feedback, even if both peer and human give the exact same 
incorrect response. Giving negative feedback to the peer but not human student clarifies the 
correct answer without threatening the human’s motivation to learn (Graesser et al. 2017a).

Other CSAL lessons use multi-agent configurations to motivate learners in different 
ways. Some involve competitions similar to Jeopardy! in which the human student and stu-
dent agent compete on a task and accumulate points. In this mode, student agent answers 
are dynamically selected to ensure the human always wins or ties which can boost self-
efficacy and self-esteem in adult readers. In a helping mode, the student agent is having 
trouble with a task (such as sending an email) and turns to the human for help. The student 
agent asks questions that the human answers, with the tutor agent stepping in for additional 
assistance if needed. Again, the human student can gain a sense of self-efficacy and confi-
dence by offering assistance to a fellow learner in need. The helping mode is more collabo-
rative and demands higher levels of interaction from the human student. As such, it should 
be more motivating than either a testing mode type of dialogue whereby the tutor agent 
fires frequent questions and feedback at the learner or a lecture mode in which the tutor and 
student agents take turns lecturing to the human student.

Graesser et al. (2018b) explored the ability of CSAL AutoTutor to teach comprehension 
strategies by analyzing the lesson performance of 124 adults with low literacy skills. In 
particular, they considered whether performance on a lesson varied by level of compre-
hension required. Each lesson in CSAL AutoTutor includes one or more of the following 
theoretical levels of comprehension as defined by Graesser and McNamara (2011): words, 
syntax, textbase, situation model, and rhetorical structure. Words and syntax represent the 
lower-level basic reading components while the others are discourse components, which are 
allegedly more difficult to master. Comprehension required for each level progresses from 
shallow to deep as follows: words < syntax < textbase < situational model < rhetorical struc-
ture. Throughout the lessons, agents asked learners questions that normally had three alter-
native responses, and performance was measured as the proportion of questions answered 
correctly. Lessons were coded on one or more of four theoretical levels (the 30 lesson sub-
set excluded syntax), with one lesson declared as primary. An analysis of variance showed 
that theoretical level affected performance (F(3,374) = 9.54, MSE = .02, p < .01), and post 
hoc comparisons (p < .05) supported the following trend in terms of average performance: 
Words (M = .68) = textbase (.67) < situation model (.73) = rhetorical structure (.76). In 
other words, adults performed better on material requiring deeper (rhetorical structure and 
situation model) rather than shallower (words and textbase) comprehension.

Unfortunately, administering quality adult literacy instruction is challenging (Greenberg 
2008), and providing high-quality comprehension instruction is particularly difficult (Doug-
las and Albro 2014). These results suggest computerized reading comprehension training, 
like that offered by CSAL AutoTutor or similar multi-agent systems, may offer a solution, 
though further analysis is needed to address issues such as learning gains, motivation and 
engagement.

4.3 � Learning Through Contradictions with Operation ARA/ARIES

Whereas CSAL AutoTutor leverages multi-agent designs to improve reading compre-
hension in individuals with low levels of literacy, Operation ARIES! (Millis et al. 2011) 
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expands the application of MACITS by helping high school and college students critically 
evaluate research they encounter in various media, such as the Web, TV, magazines, and 
newspapers. A version of ARIES! called Operation ARA (Halpern et al. 2012) was com-
mercialized on an experimental basis by Pearson Education. ARIES stands for Acquiring 
Research Investigative and Evaluative Skills whereas ARA is an acronym for Acquiring 
Research Acumen. The software asks students to find flaws in research that violate good 
scientific research designs (e.g. the need for control groups, random assignment, opera-
tional definitions and the difference between correlation and causation) and how to ask 
appropriate questions that uncover problems with methods or interpretation (Fig. 2).

ARIES/ARA uses many of the designs described previously in this article and imple-
ments them in ways that cater to different knowledge levels of players. Vicarious learning 
with human participation (design 2) is used for low knowledge students, tutorial learning 
(designs 3 or 4) is used for intermediate knowledge students and learning through teach-
ing (design 5) is used for high knowledge students. For the purpose of this article, we are 
mostly interested in discussing ARIES/ARA to demonstrate how conversations between 
agents may be orchestrated to induce confusion in the learner (design 7). This is accom-
plished by having agents contradict each other or disagree during the lesson in ways that 

Fig. 2   Screenshot of the MACITS, Operation ARIES! The three agents from left to right are Dr. Quinn 
(tutor agent), Broth (tutor agent) and Tracy (peer agent). Students and peer agent compete in a game like 
scenario in which they both read a passage then take turns identifying flaws in the described research
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confuse the learner. The idea is that the induced confusion will inspire learners to actively 
engage in deliberation, problem solving, and other forms of sense making in order to 
restore clarity by resolving their confusion (Rus et al. 2013).

Researchers used conversations adopted from ARIES/ARA on potentially flawed research 
to investigate cognitive disequilibrium, confusion, and deep learning with trialogues (D’Mello 
et  al. 2014; Lehman et  al. 2012, 2013). In a series of experiments, agents expressed false 
information and contradictions as they critiqued cases studies of research methods. Learners 
were presented with experiments that varied on whether or not they contained errors in sci-
entific methodology. For instance, one study involved a new pill that claimed to help people 
lose weight, but the study lacked a control group and the sample size was insufficient. The 
human student conversed with an expert tutor agent and a peer agent in a trialogue to iden-
tify flaws in the experiment. Specifically, the tutor agent and student agent engaged in a short 
exchange about (a) whether there was a flaw in the study and (b) if there was a flaw, where it 
occurred. There were four possible variations on the trialogue: The True–True control condi-
tion in which the tutor agent expressed a correct assertion and the student agent agreed; the 
True–False condition whereby the tutor expressed a correct assertion but the student agent dis-
agreed and gave an incorrect assertion; the False–True condition where the student agent gave 
the correct assertion but the tutor agent disagreed; and the False–False condition in which the 
student agent agreed with an incorrect assertion given by the tutor agent.

Throughout the conversation, agents intermittently asked human students for their opin-
ions, framed as a Yes–No question. For instance, the teacher agent would ask the human 
student whether or not he or she agreed with the student agent. If the student agent gave a 
correct assertion and the human learner agreed, the response was coded as correct. If the 
human learner experienced uncertainty or confusion, this should appear either as an incor-
rect response or wavering between different viewpoints when asked multiple questions about 
a topic. In the study, confusion was said to be present if both (a) the student manifested uncer-
tainty or incorrectness in his decisions to agent questions and (b) the student either reported 
being confused or the computer automatically picked up confusion (through technologies that 
track discourse interaction, facial expressions, and body posture—an area of research that is 
outside of scope of this article (D’Mello and Graesser 2010; Graesser and D’Mello 2012). 
Ideally, confusion would lead to reasoning and learning.

The contradictions and false information did impact human learners’ answers to questions 
that immediately followed a contradiction. The proportion of correct human responses fol-
lowed this order: True–True > True–False > False–True > False–False conditions. Students 
were rarely confused when agents converged on a correct solution (True–True, no contradic-
tion), but were often confused when the agents disagreed (True–False or False–True). Addi-
tional analysis showed that this confusion was beneficial to learning. Confusion generated 
learning at deeper levels, as reflected in a delayed test on scientific reasoning. Students expe-
riencing False-True performed better on multiple choice questions that tapped deeper com-
prehension of subject matter than students receiving the True–True condition. On a delayed 
post-test, learners experiencing some kind of contradiction were better at identifying flaws in 
a far transfer case study (True–True condition). Taken together, these findings suggest contra-
dictions between multiple agents can stimulate deep learning. Specifically, there appears to be 
a causal relationship between contradictions (and the associated cognitive disequilibrium) and 
deep learning, in which confusion plays either a mediating, moderating, or causal role.

There are, however, restrictions to using contradiction to stimulate deep learning. One is 
that contradictory claims must be presented one after another and often pointed out to the 
learner. If too much time passes between a claim and its contradictory counterpart, the learner 
is likely to miss the contradiction (Graesser et al. 2017a; Baker 1985) unless he or she has a 
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high amount of world knowledge. This means that conversations must be scripted to ensure 
contiguous presentation of contradictions, which is presumably easier with more than one 
agent contributing to the discussion.

5 � Future Directions

The previous sections described CITS that have successfully implemented multi-agent 
designs in an effort to facilitate learning. We wrap up our conversation on MACITS by 
considering their role in both collaborative problem solving (CPS) and virtual environ-
ments. These two areas do not routinely implement multiple pedagogical agents but may 
greatly benefit from doing so.

5.1 � Multiple Pedagogical Agents for Collaborative Problem Solving

Whereas the research profiled in the previous section focused on the use of MACITS to 
teach more long-standing, traditional instructional topics (e.g., literacy, STEM topics, 
and research methods,), there are multiple opportunities for MACITS to help foster skills 
needed for the twenty-first century. In particular, it is becoming increasingly evident that 
solutions to many of the complex issues facing the world today (e.g. cancer, poverty, cli-
mate change), depend upon effective collaboration among teams of individuals from mul-
tiple fields. Effective collaboration, like the problems these teams try to solve, is multi-fac-
eted and requires that members address factors associated with their team and with the task 
at hand (Fiore et al. 2015). A team can be threatened by an insufficient understanding of 
the problem, a social loafer, a saboteur, an uncooperative unskilled member, or a counter-
productive alliance; the problem can be mitigated by a strong leader that fills in knowledge 
gaps, draws out different perspectives, helps negotiate conflicts, assigns roles, and pro-
motes team communication (Salas et al. 2008). The growing recognition that collaborative 
problem solving (CPS) is an important skill for future generations has led some to advocate 
for its place within educational curricula and national and international assessments (Care 
et al. 2016; Griffin and Care 2015; Fiore et al. 2018; Hesse et al. 2015; National Research 
Council. 2011).

However, developing standardized computer-based assessments of CPS skills, specifi-
cally for large-scale assessment programs, is challenging. There is inherent complexity in 
assessing CPS since it involves cognitive and social aspects, and the outcomes from a CPS 
task are generally the results of the interaction of both (Rosen 2017). In addition, CPS 
test designers and researchers are faced with issues that threaten the level of consistency 
and control of the assessment. For instance, to obtain reliable assessments in different cir-
cumstances, it is necessary to have multiple teams and problem scenarios per test-taker 
(Graesser et al. 2017b). They must also address the extreme measurement error that occurs 
when particular test-takers are assigned to other humans who have unpredictable collabo-
ration difficulties (Graesser et  al. 2017b). In general, the adequacy of any psychometric 
assessment cannot be guaranteed when a small group of humans solve problems together 
and can wander in many different directions.

In addition to their role in assessment, multiple agent frameworks can be used to teach 
collaboration skills. MACITS, in particular, appear well suited to help students learn from 
collaboration environments. Students learn best when they actively contribute, receive 
feedback on their contributions, are exposed to multiple perspectives on the problem, and 
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coordinate progress among team members in solving the problem. Agents can play a role 
in facilitating these group processes. For example (Graesser et al. 2017c):

1.	 If the team is stuck and not producing contributions on the relevant topic, then the agent 
says “What’s the goal here?” or “Let’s get back on track.”

2.	 If the team meanders from topic to topic without much coherence, then the agent says 
“I’m lost!” or “What are we doing now?”

3.	 If the team is saying pretty much the same thing over and over, then the agent says “So 
what’s new?” or “Can we move on?”

4.	 If a particular team member is loafing, the agent says “What do you think, Harry?”
5.	 If a particular team member is dominating the conversation excessively, the agent says 

“I wonder what other people think about this?”
6.	 If one or more team members express unprofessional language, the agent says “Let’s 

get serious now. I don’t have all day.”

An important next step is to identify a larger set of production rules for CPS, implement 
them in MACITS environments, and evaluate whether they improve collaborative problem-
solving performance.

5.2 � Multiple Pedagogical Agents in Virtual Environments

As tools for collaborative problem solving instruction, MACITS have the potential as stand 
alone systems to foster skills and knowledge that are necessary for the twenty-first cen-
tury. However, MACITS can also be integrated into technology that is already revolution-
izing education. Virtual learning environments (VLEs) are web-based educational tools 
that often mimic real-world settings so as to contextualize learning scenarios with strong 
social components (Rowe et al. 2009). VLEs are often built as substitutes for live-action 
training scenarios because they offer certain advantages. For instance, VLEs can simulate 
scenarios that cannot be easily replicated in the real world (Alison et al. 2013; Patterson 
et al. 2009; Shubeck et al. 2016), they may be preferred by learners over traditional learn-
ing environments, and in some cases, they can be more effective than live-action train-
ing (Conradi et al. 2009; Foronda et al. 2016). The game-like environments of VLEs are 
useful for increasing learner engagement and motivation, both of which promote learning 
(Papastergiou 2009). They are immersive and often times allow learners to navigate the 
world freely, guiding themselves through the learning experience (Hew and Cheung 2010). 
However, this freedom can sometimes overwhelm learners, particularly if there is no guid-
ance, and this may inhibit rather than help their learning (Jestice and Kahai 2010). Adding 
pedagogical agents to these immersive and engaging environments is a natural step towards 
providing support and guidance to learners, ultimately enhancing the learning experience.

Since VLEs often model live-action scenarios involving interactions between multiple 
people, optimal scaffolding would include multiple virtual agents and support for multi-
party conversations between virtual and real actors. However, implementing pedagogical 
agents within a VLE is not routine because it can be challenging from a system design per-
spective. Often, the VLE must be constructed from the ground up, with pedagogical agents 
set up as a core component of the environment. Some efforts have been made to develop 
universal software allowing researchers to circumvent this requirement, for example, the 
Generalized Intelligent Framework for Tutoring (GIFT), which integrates agent based ITS 
into existing learning environments (Sottilare et al. 2013).
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6 � Discussion

This article described the current state of common multi-agent designs for conversa-
tional intelligent learning environments, provided examples of systems that implement 
these designs, and also discussed domains such as virtual learning and CPS that hold 
great potential for the use of MACITS. In doing so, we make known some notable 
advantages of MACITS over single agent CITS. For example, it is not possible to model 
social interactions, stage competitions, and manipulate cognitive disequilibrium with-
out at least two agents. Furthermore, by implementing particular multi-agent designs, 
researchers or educators can cater to different student populations. Some designs appear 
to be more suitable for students with less domain knowledge and skills while others 
should incite learning in more competent students. Since MACITS are a relatively new 
endeavor, more research is needed regarding various aspects of the systems and their 
effects on learning. For example, there is a need to clarify the conditions in which par-
ticular designs are effective in facilitating aspects of learning. Only a few empirical 
studies back the contention that vicarious learning is best for low ability students, tutor-
ing is best for intermediate ability students, and learning by teaching is best for high 
ability students. Also, work should be done to better specify the influence of designs on 
learners’ varying emotional states. This is particularly important so as to leverage the 
capabilities of MACITS for tapping into social components of learning. For example, 
when does competition increase versus decrease motivation and engagement, and when 
does cognitive disequilibrium lead to frustration and disengagement rather than confu-
sion and deep learning. By analyzing multi-agent designs under different conditions, we 
can use meta-analyses to compare results and learn how to use agents most effectively.

Despite clear advantages of MACITS, it is important to note additional agents come 
at a cost. A dialog between one agent and a human is relatively easy to implement but 
dual agents significantly increase the number of communication turns and possible 
sequences of speech acts (e.g. greetings, questions, answers, requests, hints, evalua-
tions, feedback, etc.). Implementations of systems with more than two agents face a 
combinatorial explosion problem that demands systematic computational modeling and 
expertise in script authoring above and beyond what is typically required. However, 
as we have witnessed time and again, technological breakthroughs could pave way for 
the seamless integration of any number of conversational agents into an ITS. Likewise, 
technology and research should lead to future versions of MACITS that are more com-
putationally friendly and require less expertise to author.

In addition to making MACITS easier to use and less expensive, we expect the design 
of future MACITS will be informed by current research on what fosters learning gains 
in hypermedia environments using multiple pedagogical agents. Some of this work con-
siders when and why students ask for help and what type of help is most effective. For 
example, it appears help in the form of feedback is particularly useful in multiple peda-
gogical systems. When this feedback is adaptive and designed to regulate learning, it 
facilitates learning (Azevedo et al. 2012) and produces higher learning gains than feed-
back from single agent designs (Martin et al. 2016). However, which multiple agents are 
included in the design affects learning as well, and future MACITS developers should 
be aware that learning gains are not always proportional to the time spent with an agent 
(Martin et al. 2016). It is also important to consider when is optimal for a MACITS to 
offer help, since learner characteristics influence help seeking behavior. For instance, 
we know that students with lower prior knowledge seek help less effectively (Puustinen 
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1998; Renkl 2002; Wood and Wood 1999) so those who need help the most are the least 
likely to receive it when using a MACITS that provides help only on request (Aleven 
et al. 2003, 2016).

If future work continues to provide insight into best practices concerning the design and 
development of MACITS, we expect they will become more common in the classroom. 
The hope is that they will be capable of autonomously help hundreds of thousands of stu-
dents develop content mastery, learning strategies, critical thinking, writing proficiency, 
and other skills in a manner that effectively integrates cognition, motivation, and emotion.
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